Transfer-printing of active layers to achieve high quality interfaces in sequentially deposited multilayer inverted polymer solar cells fabricated in air
نویسندگان
چکیده
Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs.
منابع مشابه
بهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملApplication of Au@SiO2 Plasmonic Nanoparticles at Interface of TiO2 Mesoporous Layers in Perovskite Solar Cells
To investigate the plasmonic effect in perovskite solar cells, the effect of depositing Au@SiO2 nanoparticles on the top and the bottom of mesoporous TiO2 layers was studied. First, Au@SiO2 nanoparticles were synthesized. The particles were then deposited at the different interfaces of mesoporous TiO2 layers. Although the two structures show approximately similar optical absorption, only cells ...
متن کاملFabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers
Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bul...
متن کاملFlexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method
Vanadium suboxide (VOx) layers deposited by an electro-spray (e-spray) printing method were applied to the fabrication of high efficiency patterned polymer solar cell (PSC) modules. By tailoring surface tension and the atomization condition of the e-sprayed sol precursor, e-sprayed VOx layers on top of both hydrophilic and hydrophobic surfaces were successfully obtained, which enabled alternati...
متن کاملOptimization of Annealing Process for Totally Printable High-current Superstrate CuInS2 Thin-Film Solar Cells
Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. A titanium dioxide blocking layer and an In2S3 buffer layer are deposited by the spray pyrolysis method. A CIS2 absorber layer is deposited by the spin coating method using CIS ink prepared by a 1-butylamine solvent-based solution at room temperature. To obtain optimum annealin...
متن کامل